## Exercise 36

Find an equation for the plane that passes through $(3,2,-1)$ and $(1,-1,2)$ and that is parallel to the line $\mathbf{v}=(1,-1,0)+t(3,2,-2)$.

## Solution

The equation for a plane is

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0,
$$

where $\mathbf{n}$ is a vector normal to the plane and $\mathbf{r}_{0}$ is the position vector for any point in the plane. The normal vector is perpendicular to both the direction the line goes in, $(3,2,-2)$, and the displacement vector,

$$
(3,2,-1)-(1,-1,2)=(2,3,-3)
$$

Take the cross product of these two to get $\mathbf{n}$.
$\mathbf{n}=(3,2,-2) \times(2,3,-3)=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ 3 & 2 & -2 \\ 2 & 3 & -3\end{array}\right|=(-6+6) \hat{\mathbf{x}}-(-9+4) \hat{\mathbf{y}}+(9-4) \hat{\mathbf{z}}=5 \hat{\mathbf{y}}+5 \hat{\mathbf{z}}=(0,5,5)$
Either of the position vectors, $(3,2,-1)$ or $(1,-1,2)$, will do for $\mathbf{r}_{0}$. Choose $\mathbf{r}_{0}=(3,2,-1)$.

$$
\begin{gathered}
(0,5,5) \cdot(x-3, y-2, z+1)=0 \\
0(x-3)+5(y-2)+5(z+1)=0 \\
5 y-10+5 z+5=0 \\
5 y+5 z=5 \\
y+z=1
\end{gathered}
$$

